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ABSTRACT 

In this paper, the effect of radiation on magnetohydrodynamic free convection 

boundary layer flow on a solid sphere with convective boundary conditions in 

a micropolar fluid, is considered. The basic nonlinear system of partial 

differential equations of boundary layer are first transformed into a non-

dimensional form and are then solved numerically using an implicit finite 

difference scheme known as the Keller-box method. Numerical solutions are 

obtained for the local Nusselt number and the local skin friction coefficient, as 

well as the velocity and temperature profiles. The features of the flow and 

heat transfer characteristics for various values of the Prandtl number Pr, the 

material or micropolar parameter K, the magnetic parameter M, the radiation 

parameter RN , the conjugate parameter   and the coordinate running along 

the surface of the sphere, x are analyzed and discussed. 
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1. Introduction 

The effect of radiation on boundary layer flow and heat transfer 

problems can be quite significant at high operating temperature such as gas 

turbines, nuclear power plant, and thermal energy store (Bataller (2008a)). 

Since the process in engineering areas occurs at high temperature, the study 

on the effect of radiation becomes quite significant for the design of the 

equipment. Molla et al. (2011), Akhter and Alim (2008) and Miraj et al. 2010 

studied the radiation effect on free convection flow from an isothermal sphere 

in viscous fluid with constant wall temperature, surface heat flux and in 

presence of heat generation, respectively. 

 

The application of the magnetohydrodynamic (MHD) plays an important 

role in agriculture, engineering and petroleum industries (Ganesan and Palani 

(2004)). Alam et al. (2007) and Molla et al. (2005) studied the viscous 

dissipation and MHD effects on natural convection flow over a sphere in a 

viscous fluid in the presence of heat generation.  

 

The essence of the theory of micropolar fluid flow lies in the extension 

of the constitutive equation for Newtonian fluid, so that more complex fluids 

such as particle suspensions, liquid crystal, animal blood, lubrication, and 

turbulent shear flows can be described by this theory. The theory of 

micropolar fluid was first proposed by Eringen (1966) and has been further 

considered by many researchers. Nazar et al. (2002a, 2002b) considered the 

free convection boundary layer flows on a sphere in a micropolar fluid with 

constant wall temperature and constant heat flux, respectively. This paper has 

been extended by Cheng (2008) to micropolar fluid with constant wall 

temperature and concentration, while Salleh et al. (2012) extended it to a 

micropolar fluid with Newtonian heating. We notice, however, that the 

previous papers studied free convection boundary layer flows on a sphere 

without effects of radiation and magnetohydrodynamic. It should be 

mentioned that the mathematical background of the micropolar fluid flow 

theory is presented in the books by Eringen (2001) and Łukaszewicz (1984) 

and in the review papers by Ariman et al. (1973, 1974). 

 

On the other hand, convective boundary conditions, namely when heat is 

supplied through a bounding surface of finite thickness and finite capacity, is 

the type of boundary condition that has been given much attention recently. 

The interface temperature is not known a priori for problems of convective 

boundary conditions, but depends on the intrinsic properties of the systems. 

This heating process is called conjugate or convective boundary conditions 

(Merkin (1994)).  
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Aziz (2009) studied a similarity solution for the forced convection flow 

and thermal boundary layer over a flat plate with a convective surface 

boundary condition. The forced convection flow of a uniform stream over a 

flat surface with a convective surface boundary condition has been studied 

also by Merkin and Pop (2011). Yao et al. (2011) presented the heat transfer 

of a viscous fluid flow over a stretching/shrinking sheet with a convective 

boundary condition. Recently, the numerical solution for stagnation point 

flow over a stretching surface with convective boundary conditions using the 

shooting method has been studied by Mohamed et al. (2013). 

 

Therefore, the objective of the present paper is to study numerically the 

effect of radiation on magnetohydrodynamic free convection boundary layer 

flow problem past a solid sphere with convective boundary conditions in a 

micropolar fluid. The governing boundary layer equations are first 

transformed into a system of non-dimensional equations via the non-

dimensional variables, and then into non-similar equations before they are 

solved numerically by the Keller-box method, as described in the book by 

Cebeci and Bradshaw (1988). 
 

2. Mathematical Analyses 

Consider a heated sphere of radius a, which is immersed in a viscous 

and incompressible micropolar fluid of ambient temperature T  . The surface 

of the sphere is subjected to a convective boundary conditions, as shown in 

Figure 1. The gravity vector g  acts downward in the opposite direction, 

where the coordinates x  and y
 
are chosen such that x  measures the 

distance along the surface of the sphere from the lower stagnation point and 

y  measures the distance normal to the surface of the sphere. 
 

 
   

/x a                         ( )f f

T
k h T T

y


  


 

             g                

 

              a  ( )r x  

               x             y  

     0    

 
Figure 1: Physical model and coordinate system 
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We assume that the equations are subjected to convective boundary 

conditions of the form proposed by Aziz (2009). Under the Boussinesq and 

boundary layer approximations, the basic equations are  

 

( ) ( ) 0r u r v
x y

 
 

 
    (1) 

2 2

2
( ) ( )sin

u u u x H
u v g T T u

x y y a y


     




     
         

       

(2) 

2

2
2

H H u H
j u v H
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  

      
       

      
  (3) 

2

2

1 rqT T T
u v

x y y c y




  
  

   
                 (4) 

 

These equations are subjected to the boundary conditions of (Salleh et al. 

(2012); Aziz (2009)) 

 

0,u v   ( )f f

T
k h T T

y


  


 ,  

u
H n

y


 


 as 0,y   

0,u  ,T T
 0,H   

as y  ,  (5) 

 

where u  and v  are the velocity components along the x and y  directions, 

respectively, H  is the angular velocity of micropolar fluid, wq
 
is the surface 

heat flux, 
rq  

is the radiative heat flux,   is the vortex viscosity, T is the 

local temperature, fT  is the temperature of the hot fluid, g is the gravity 

acceleration, k  is the thermal conductivity,   is the electric conductivity,  
is the thermal diffusivity,   is the thermal expansion coefficient, 

 
is the 

kinematic viscosity, μ is the dynamic viscosity,   is the fluid density,
 c

 
is 

the specific heat, j is the microinertia density and
 fh

 
is the heat transfer 

coefficient for the convective boundary conditions. It is worth mentioning 

that in boundary conditions (5), n is constant and 0 1n  . The value 0n  , 

which leads to 0H   at the wall, represents concentrated particle flows in 

which the particle density is sufficiently great that microelements close to the 

wall are unable to rotate or is called “strong” concentration of microelements 

(Jena, (1980) and Mathur, (1980)).  
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The case corresponding to 1/ 2n   results in the vanishing of 

antisymmetric part of the stress tensor and represents “weak” concentration 

of microelements Mathur, (1980). In this case, the particle rotation is equal to 

fluid vorticity at the boundary for fine particle suspension. When 1n  , we 

have flows which are representative of turbulent boundary layer (Mathur 

(1980)). The case of 1/ 2n   is considered in this paper. 

 

Let ( ) sin ( / )r x a x a
 
be the radial distance from the symmetrical axis 

to the surface of the sphere and we assume (see Rees and Bassom (1996) or 

Rees and Pop (1998)) that the spin gradient viscosity   are given by 

 

( / 2) j                       (6) 

 

We introduce now the following non-dimensional variables (Salleh et al. 

(2012); Aziz (2009)): 

,
x

x
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





    (7) 

 

where 
 

3 2( ) /fGr g T T a    is the Grashof number for convective 

boundary conditions. Using the Rosseland approximation for radiation, the 

radiative heat flux is simplified as (see Bataller (2008b)) 
* 4

*

4
,

3
r

T
q

k y

 
 


   (8) 

where 
*  and 

*k  are the Stefan-Boltzmann constant and the mean 

absorption coefficient, respectively. We assume that the temperature 

differences within the flow through the micropolar fluid such as that the term  
4T  may be expressed as a linear function of temperature. Hence, expanding 
4T  in a Taylor series about T  

and neglecting higher-order terms, we get 

 
4 3 44 3T T T T  

    (9)
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Substituting (6)–(9) into Eqs. (1)–(4), we obtain the following non-

dimensional equations of the problem under consideration: 

 
( ) ( ) 0,ru rv

x y

 
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    (10) 
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where /K  

 

is the material or micropolar parameter, Pr /   is the 

Prandtl number, 2 2 1\2/M a Gr     is the magnetic parameter and 
* * 3/ 4RN k c T     is the radiation parameter. The boundary conditions 

(5) become 

0,u v   (1 ),
y
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
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
 

1

2

u
H

y
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where 
1/4 /fah Gr k 

 
is the conjugate parameter for convective boundary 

condition. It is noticed that, if    then we have (0) 1  , which is the 

constant wall temperature and this case has been studied by Nazar et al. 

(2002a) . 

 

To solve (10) to (13), subjected to the boundary conditions (14), we assume 

the following variables:  

 
( ) ( , ), ( , ), ( , ),xr x f x y x y H xh x y      (15) 

 

where 
 
is the stream function defined as  

1
u

r y





 

and 
1

v
r x


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
,   (16) 

 

which satisfies the continuity equation (10). Thus, (11) to (13) become 
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subject to the boundary conditions 
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(20) 

 

It can be seen that at the lower stagnation point of the sphere, 0,x   

equations (17) to (19) reduce to the following nonlinear system of ordinary 

differential equations: 
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The boundary conditions (20) become 
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2
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' 0,f   0,   
0h 

 
as ,y    (24) 

 

where primes denote differentiation with respect to y.  

 

The physical quantities of interest in this problem are the local skin 

friction coefficient fC
 
and the Nusselt number ,uN

 
and they can be written 

as  
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Using the non-dimensional variables (7) to (9) and the boundary 

conditions (14) the local skin friction coefficient fC and the local Nusselt 

number uN are  

          
2

2
1 ( ,0),

2
f

K f
C x x

y

 
  

 
  

4
1 1 ( ,0)

3
u RN N x 
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 
           (27) 

 

3. Results and Discussion 

The nonlinear partial differential equations (17) to (19) subject to the 

boundary conditions (20) were solved numerically using an efficient, implicit 

finite-difference method known as the Keller-box scheme for convective 

boundary conditions with several parameters considered, namely the 

micropolar parameter K, the magnetic parameter M, the radiation parameter 

RN , the Prandtl number Pr, the conjugate parameter γ and the coordinate 

running along the surface of the sphere, x.  

 

The numerical solutions start at the lower stagnation point of the sphere, 

0,x   with initial profiles as given by equations (21) to (23) and proceed 

round the sphere up to 90 .ox   

 

The heat transfer coefficient ( )( ,0)y x    at the lower stagnation point 

of the sphere, 0,x   for various values of K when Pr = 0.7, 7, without effect 

of radiation and magnetohydrodynamic (i.e. M = 0, 0RN  ) and    are 

shown in Table 1. In order to verify the accuracy of the present method, the 
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present results are compared with those reported by Huang and Chen (1987) 

and Nazar et al. (2002a). It is found that the agreement between the 

previously published results with the present ones is excellent. We can 

conclude that this method works efficiently for the present problem and we 

are also confident that the results presented here are accurate. 

 
TABLE 1: Values of the heat transfer coefficient ( ) ( ,0)y x    at the lower stagnation point of the 

sphere, 0,x    for various values of K when Pr = 0.7, 7, without the effect of radiation and 

magnetohydrodynamic (i.e. M = 0, 0RN  ) and    

 

Pr 

 
K 

 

Huang and 
Chen (1987) 

0.7 

Nazar et 
al.(2002a) 

 

Present 

 

Huang and 
Chen (1987) 

7 

Nazar et 
al.(2002a) 

 

Present 

0 0.4574 0.4576 0.457582 0.9581 0.9595 0.959498 

0.5 - 0.4336 0.433616 - 0.8905 0.890523 

1 - 0.4166 0.416577 - 0.8443 0.844347 

1.5 - 0.4035 0.403509 - 0.8096 0.809569 

2 - 0.3930 0.393023 - 0.7805 0.780481 

 

Table 2 shows the values of the wall temperature ( ,0),x  the heat 

transfer coefficient ( ) ( ,0)y x    and the skin friction coefficient 

2 2( )( ,0),f y x 
 
at the lower stagnation point of the sphere, 0,x   for 

various values of RN
 
when Pr = 0.7, K = 2, 0.1 

 
and M = 0, 5. It is 

observed that, when the magnetic parameter M is fixed, an increase in the 

radiation parameter RN , causes the values of ( ,0),x  ( ) ( ,0)y x  
 
and 

2 2( )( ,0),f y x   to increase. Also when RN
 
is fixed, and M increases, the 

value of ( ,0),x
 
increases but the values of 

2 2( )( ,0),f y x 
 
and 

( ) ( ,0)y x    decrease. 

 
TABLE 2: Values of the wall temperature ( ,0),x  the heat transfer coefficient ( ) ( ,0)y x    and the 

skin friction coefficient 
2 2( )( ,0)f y x   at the lower stagnationpoint of the sphere, 0,x    for various 

values of 
RN

 
when Pr = 7, K = 2, M = 0, 5, and 0.1   

 

  M = 0   M = 5  

RN  ( ,0)x  ( )y    2 2( )f y   ( ,0)x  ( )y    2 2( )f y   

0 0.159324 0.084067 0.077444 0.215447 0.078455 0.055249 

1 0.190971 0.188773 0.098184 0.264358 0.171650 0.067778 

2 0.209968 0.289678 0.111751 0.293693 0.258979 0.075365 
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3 0.224033 0.387983 0.122225 0.314982 0.342509 0.080891 

4 0.235386 0.484256 0.130896 0.331738 0.423232 0.085250 

5 0.244992 0.578840 0.138354 0.345481 0.501798 0.088828 

 

Figures 2, 3 and 4 show the temperature (0, ),y  velocity 

( )(0, )f y y   and angular velocity profiles (0, )h y
 
when Pr = 7, K = 1, M = 

5, 0,1,3,5RN   and 0.1  , respectively. It is found that as RN  
increases, 

the temperature, velocity and angular velocity profiles increase. 

 

 
Figure 2: Temperature profiles (0, )y  when Pr = 7, M= 5, K = 1, 0,1,3,5RN 

 
and 0.1 

 

 
Figure 3: Velocity profiles ( )(0, )f y y 

 
when Pr = 7, K = 1, M= 5, 0,1,3,5RN 

 
and 0.1 

 

. 
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Figure 4: Angular velocity profiles (0, )h y  when Pr = 7, K = 1, M = 5, 0,1,3,5RN   and 0.1 

 

 

The temperature (0, ),y
 
velocity ( )(0, )f y y   and angular 

velocity profiles (0, )h y
 
are presented in Figures 5, 6 and 7, when Pr = 7, K 

= 1, 1,RN 
 
M = 0, 5, 10 and 0.1  , respectively. These figures show that 

when the value of M increases, it is found that the temperature profiles also 

increase, but the velocity and angular velocity profiles decrease.
 

 
Figure 5: Temperature profiles (0, )y  when Pr = 7, K = 1,

 
1,RN 

 
M = 0, 5, 10 and 0.1 

 
 



Hamzeh Taha et al. 

 

474 Malaysian Journal of Mathematical Sciences 

 

 
Figure 6: Velocity profiles ( )(0, )f y y 

 
when Pr = 7, K = 1, 1,RN 

 
M = 0, 5, 10 and 0.1 

 

 
 

Figure 7: Angular velocity profiles (0, )h y  when Pr = 7, K = 1, 1,RN   M = 0, 5, 10 and 0.1   

 

Variations of the local Nusselt number uN  and the local skin friction 

coefficient fC  with various values of x when Pr = 0.7, K = 1 1,RN 
 
M =0, 

5, 10 and 0.1 
 
are plotted in Figures 8 and 9, respectively. It is found that 

as M increases, both values of  the local Nusselt number and the local skin 

friction coefficient decrease.
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Figure 8: Variation of the local Nusselt number uN

 
with x when Pr = 0.7, K = 1,

 
1,RN 

  
M = 0, 5, 10 

and 0.1 
 

 
Figure 9: Variation of the local skin friction coefficient, fC  with x when  Pr = 0.7, K = 1, 1,RN    

M = 0, 5, 10 and 0.1 
 

 

Figures 10 and 11 display the local Nusselt number uN
 
and the local 

skin friction coefficient fC  with various values of x when Pr = 0.7, K = 1, M 

= 5, 0,1,3,5RN 
 
and 0.1  , respectively. It is found that as RN

 
increases, both values of the local Nusselt number and the local skin friction 

coefficient increase. We notice from Figures 8 and 10 that the value of
 uN

 
is 

higher at 0ox   than those at 0 90o ox  , because the sphere temperature 

is almost equal to fluid temperature at 0ox  , and has a different value when 

0 90o ox  .  
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From Figures 9 and 11, it is found that the value of 0fC 
 
at 0ox  , 

because at this point the value of the wall shear stress w  
is very small, and  

the maximum value of fC  occurs when 90ox  , because in this case the 

value of w  
is very high. 

 
Figure 10: Variation of the local Nusselt number uN with x when Pr = 0.7, K = 1, M= 5, 0,1,3,5RN 

 

and 0.1   

 
Figure 11: Variation of the local skin friction coefficient, fC  with x when Pr = 0.7, K = 1,          

M = 5, 0,1,3,5RN 
 
and 0.1 

 
 

4. Conclusions 

In this paper, we have numerically studied the effect of radiation on 

magnetohydrodynamic free convection boundary layer flow on a solid sphere 

with convective boundary conditions. It shows how the Prandtl number Pr, 
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the magnetic parameter M, the thermal radiation parameter ,RN  the 

micropolar parameter K, the conjugate parameter 
 
and the coordinate 

running along the surface of the sphere, x affect the values of the local 

Nusselt  number uN , the local skin friction coefficient fC  as well as the 

temperature, velocity  and angular velocity profiles. 

 

We can conclude that 

 

 when Pr, 
 
and M are fixed, as RN  increases, the temperature, velocity 

and angular velocity profiles, as well as the skin friction coefficient and 

the heat transfer coefficient increase. When Pr,  and RN  are fixed, as M 

increases, the temperature profiles increase, but the velocity and angular 

velocity profiles
 
decrease. 

 when Pr,   and RN  are fixed, as M increases, both values of the local 

Nusselt number and the local skin friction coefficient decrease. If Pr,   

and  M are fixed, as RN
 
increases, the local Nusselt number and the local 

skin friction coefficient increase. 
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